维科新闻


形成一个颜色按一定顺序排列的光分布

发布时间:2019-12-04

 1665年牛顿进行太阳光的实验,它能把太阳光分解成简单的组成部分,形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可用第一暗环的空气隙的厚度来定量地表征相应的单色光。 [1] 
牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流,微粒从光源飞出来,在均匀介质内遵从力学定律作等速直线运动,并且用这种观点对折射和反射现象作了解释。惠更斯是光的微粒说的反对者,他创立波动说,1690年在《光论》一书中写道:“光同声一样,是以球形波面传播的。” 并且指出光振动所达到的每一点都可视为次波的振动中心,次波的包络面为传播着的波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。 [1] 
19世纪初,波动光学初步形成,其中以T.杨和A.菲涅耳的著作为代表。杨圆满地解释了“薄膜的颜色”和双狭缝干涉现象。菲涅耳于1818年以杨氏干涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满解释光的干涉和衍射现象,也能解释光的直线传播。在进一步的研究中,观察到了光的偏 振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续介质(以太)中传播的横波。但是由此不得不把弹性固体的特性强加于以太,如此性质的以太是难以想象的,并且即使承认以太也没有能把光学现象同其他物理现象联系起来。 [1]  [2] 
1846年法拉第发现了光的振动面在磁场中发生旋转;1856年W.韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。它们表示光学现象与电磁学现象间有一定的内在关系。 [1] 
1860年前后麦克斯韦的理论研究指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。按麦克斯韦的理论,若以c代表光在真空中的速度,v代表光在介电常数为ε和磁导率为μ的透明介质中的速度,则有:
c/v=(εμ)1/2
式中c/v恰为介质的折射率,所以有:
n=(εμ)1/2
上式给出了透明介质的光学常数n跟电学常数ε和磁学常数μ的关系。在认识光的物理性质方面,麦克斯韦理论较以前各种理论向前迈进了一大步。 [1] 
然而,这种理论不能说明产生频率高达光的频率的电振子的性质,也不能解释折射率随光的频率而变所引起的光的色散。到了1896年H.洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。洛伦兹的理论中以太乃是广袤无限的不动的介质,其唯一特点是,这种介质中光振动具有一定的传播速度。 [1] 
对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的,则可将运动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年A.迈克耳孙等用干涉仪测“以太风”得否定的结果,这表明到了洛伦兹的电子论时期,人们对光本性的认识仍然有不少片面性。 [1] 
1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论,认为各种频率的电磁波(包括光),只能以各自确定分立的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的概念提出了光与物质相互作用的问题。量子论不但给光学,也给整个物理学提供了新的概念,通常把它的诞生视为近代物理学的起点。 [1]